
1 | OWL documentation

OWL
Occupant Wellbeing through Lighting

V1.0 (15 Oct 2021)

This is the documentation of OWL: an opensource workflow in Rhino Grasshopper

developed for performing spectral lighting simulations, and evaluating non-image-forming

effects of light on occupant wellbeing.

This tool uses parsimonious approach with minimal inputs, for evaluating the following NIF

metrics: Melanopic metrics (subset of alpha-opic metrics) recommended by CIE as part

of CIES026 standard, and Circadian metrics proposed by Lighting Research Centre.

This is developed by Marshal Maskarenj at LAB/LOCI UCLouvain, along with Bertrand

Deroisy and Sergio Altomonte; as part of the FNRS funded project SCALE (Shading

Control Algorithms from Luminance-based Evaluations).

2 | OWL documentation

Contents
Overview ... 4

Functionality of OWL .. 4

Structure of this document ... 4

Installation instructions as prerequisite to running OWL .. 5

Installing Python ... 5

Installing Radiance ... 5

Installing latest Ladybug 1.xx for access to Ladybug Image Viewer component 5

Installing GH_Cpython component .. 5

Modifying following locations on the GH script: .. 5

Description of components based on cluster structure: ... 6

1. OWL-Common ... 6

OpenEPW_loc .. 6

SunPos ... 6

OpenEPW .. 7

CIE_Skygen ... 7

PerezSky .. 9

skyLum_map .. 10

3CspectralSky .. 10

HDR2DiscreteLumEx ... 10

2a. OWL-Sky .. 11

SpectralSkydome ... 11

CCT2SPD ... 12

2b. OWL::View ... 13

SpectralViewdome.. 13

viewCCT2SPD ... 13

3. OWL::Spectral .. 13

RelativeCombinedSPD ... 14

SPD_graph ... 14

SPD2spectral ... 14

CIES026_aopic .. 15

circadLight .. 16

3 | OWL documentation

Describing functionality of the various components in the workflow 17

1. Extracting relevant parameters from the weather file for the point in time 17

2. Solar Altitude and Azimuth at a point in time, for a location 18

3. Generating sky-luminance for various sky patches .. 18

4. Generating Radiance skyfile for Image based simulation 19

5. Per-pixel reading of the luminance data, and discretizing luminance at various view

positions ... 19

6. Spectral recipes under sky and at the viewpoint .. 20

7. Dashboard of components ... 22

4 | OWL documentation

OWL: Occupant Wellbeing through Lighting

Overview

Functionality of OWL
The workflow of OWL includes multiple models for evaluating non-image forming (NIF)

metrics, as indicators of the non-visual effects of light on occupant well-being. This

integrated approach of combining models, requires minimal inputs from the users in

evaluating the following NIF metrics: α-opic metrics recommended by CIE as part of the

CIES026 standard, and circadian metrics proposed by Lighting Research Centre.

A user needs to define only the weather file (in .EPW format) and geometrical data of the

scene (from Rhino viewport) as input to the workflow. Using the following combination of

{either Perez or CIE Model} >> {Luminance to CCT models} >> {CIE015 standard} >> and

{either of CIES026 standard or LRC's protocol}, this workflow evaluates these NIF metrics

of lighting under unobstructed sky conditions. For viewing conditions indoors, the per-

channel SPD weightage is evaluated for generating a Radiance sky file, and a luminance

map of the scene is generated via Radiance image-based simulations with spectral sky

as light source. With the application of multiple masks, the luminance is discretized into

patches, and the NIF metrics are evaluated using a combination of {Discretized

Luminance} >> {Luminance to CCT models} >> {CIE015 standard} >> and {either of

CIES026 standard or LRC's protocol}.

In the present version, luminaires and reflected components of daylight are not considered

for evaluating NIF metrics, but may be incorporated in future versions.

Structure of this document
The first part of the document presents instructions for installing prerequisites, which are

needed for OWL to function on a system. The second part presents a detailed description

of the originally developed components. The third part describes components based on

functionality, along with their functional screen-captures on the grasshopper canvas.

5 | OWL documentation

Installation instructions as prerequisite to running OWL

Installing Python
1. Python 2.7 can be downloaded from https://www.python.org/downloads/release/python-2718/
2. The following need to be added to path: <<C:\Python27>> and <<C:\Python27\Scripts>>
more information on adding path variables can be accessed here: https://helpdeskgeek.com/windows-
10/add-windows-path-environment-variable/
3. Using Pip, the following components must be installed: numpy, scipy, and matplotlib... Sample command
for pip installation of these packages is like <<pip install numpy>>

Installing Radiance
1. Radiance needs to be installed on Windows. It is available at https://github.com/LBNL-
ETA/Radiance/releases
The latest release as of this day is here: https://github.com/LBNL-ETA/Radiance/releases/tag/8aeb24b8
2. Radiance needs to be added to Path, if not automatically done in installation process.

Installing latest Ladybug 1.xx for access to Ladybug Image Viewer

component
1. The latest Ladybug 1.x can be downloaded from https://www.food4rhino.com/en/app/ladybug-tools (latest
is 1.3 as of this day)
2. With the folder unzipped, and installer.gh opened in Grasshopper – the installation instructions can be
followed.

Installing GH_Cpython component
1. The component can be downloaded in a zip file from https://www.food4rhino.com/en/app/ghcpython
2. In Grasshopper, appropriate folder needs to be opened as File > Special Folders > Component Folders
3. From the zip file, GH_CPython and FastColoredTextBox.dll need to be pasted into Libraries folder

Modifying following locations on the GH script:
The locations defined for ‘Folder’, ‘EPW File’, ‘view masks’ (three) and ‘region mask’ need to be modified to
suit appropriate locations the user’s systems.

https://www.python.org/downloads/release/python-2718/
https://helpdeskgeek.com/windows-10/add-windows-path-environment-variable/
https://helpdeskgeek.com/windows-10/add-windows-path-environment-variable/
https://github.com/LBNL-ETA/Radiance/releases
https://github.com/LBNL-ETA/Radiance/releases
https://github.com/LBNL-ETA/Radiance/releases/tag/8aeb24b8
https://www.food4rhino.com/en/app/ladybug-tools
https://www.food4rhino.com/en/app/ghcpython

6 | OWL documentation

Description of components based on cluster structure:

This workflow is divided into 4 clusters: OWL-Common, OWL-Sky, OWL-View and

OWL-Spectral. OWL-Common contains preliminary components used for initiating

simulations, such as data extraction from weather files, identifying solar position

in the sky-dome, and evaluating sky luminance using standard models. Also

included in this cluster are few components, for visualizing sky-luminance

distribution on the Rhino viewport. OWL-Sky and OWL-View include components

specific to unobstructed sky and to observer’s view, respectively, which are needed

as part of specific workflows. OWL-Spectral contains components for spectral sky

evaluations, which includes protocols from literature, standards (CIE015 and

CIES026) and toolboxes (CIE alpha-opic toolbox, and LRC circadian toolbox).

1. OWL-Common

The OWL-Common cluster is aimed at preliminary evaluations, and includes the following

components as part of the simulation workflow: OpenEPW_loc, SunPos, OpenEPW,

CIE_Skygen, PerezSky, skyLum_map, 3CspectralSky and HDR2DiscreteLumEx.

The components are described further:

OpenEPW_loc

This component has one input node (‘epwFile’) and five output nodes (‘name’,
‘latitude’, ‘longitude’, ‘timeZone’ and ‘elevation’).
This component reads an EnergyPlus Weather (EPW) file, and extracts
location-related data from its static headers. An EPW file is a text-based file
that contains 8 rows of static data corresponding to the location, design
conditions and daylight-saving parameters; followed by 8760 rows of hourly
datasets.

This component takes such weather file as input, parses through the text-based contents of the header, and
extracts parameters of location-name, latitude, longitude, time-zone, and elevation, respectively. The
Python code for this component is available here.

SunPos

This component has five input nodes (‘latitude’, ‘longitude’, ‘timeZone’, ‘hour’
and ‘DOY’) and two output nodes (‘sunAltitude’ and ‘sunAzimuth’).
It takes the first three inputs corresponding to location from OpenEPW_loc,
along with user-defined Hour-of-Day and Day-of-Year; and uses this input to
generate the altitude and azimuth angles of Sun -- at the given location for the
specified hour.

The altitude angle (‘sunAltitude’) corresponds to the angle of Sun relative to earth’s horizon, whereas
azimuth angle (‘sunAzimuth’) corresponds to the angular distance between projected line-of-sight of Sun on
the ground, with either due South or due North. This component uses the following underlying equations to
evaluate the output from the input data:

https://github.com/marshalmaskarenj/OWL-SCALE/blob/main/OpenEPW_loc.py

7 | OWL documentation

The solar altitude angle and solar azimuth can be evaluated as:

𝑠𝑢𝑛𝐴𝑧𝑖𝑚𝑢𝑡ℎ = 𝑐𝑜𝑠−1 (
𝑠𝑖𝑛(𝑑𝑒𝑙𝑡𝑎) ∗ 𝑐𝑜𝑠(𝑝ℎ𝑖)) − (𝑐𝑜𝑠(𝑑𝑒𝑙𝑡𝑎) ∗ 𝑠𝑖𝑛(𝑝ℎ𝑖) ∗ 𝑐𝑜𝑠(𝐻𝑅𝐴)

cos(𝑠𝑢𝑛𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒)
)

𝑠𝑢𝑛𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 = 𝑠𝑖𝑛−1[sin(𝑑𝑒𝑙𝑡𝑎) ∗ sin(𝑝ℎ𝑖) + cos(𝑑𝑒𝑙𝑡𝑎) ∗ cos(𝑝ℎ𝑖) ∗ cos(𝐻𝑅𝐴)]

Here delta is the declination angle, phi is latitude angle and HRA is the hour angle calculated as below:

𝐻𝑅𝐴 = 15 ∗ (𝐿𝑆𝑇 − 12)

𝐿𝑆𝑇 = 𝐻𝑂𝐷 + (
𝑇𝐶𝑓𝑎𝑐𝑡𝑜𝑟

60
)

Here LST is Local solar time, HOD is hour of day and TCfactor is time correction factor calculated as below:

𝑇𝐶𝑓𝑎𝑐𝑡𝑜𝑟 = 4 ∗ (𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 − 𝐿𝑆𝑇𝑀) + 𝐸𝑜𝑇

𝐿𝑆𝑇𝑀 = 15 ∗ (𝑈𝑇𝐶)

Here LSTM is local standard time meridian, UTC is universal coordinated time, and the equation of time
EoT is calculated as below:

𝐸𝑜𝑇 = 9.87 ∗ 𝑠𝑖𝑛(2 ∗ 𝐵) − 7.53 ∗ 𝑐𝑜𝑠(𝐵) − 1.5 ∗ 𝑠𝑖𝑛(𝐵)

𝑤ℎ𝑒𝑟𝑒𝐵 = (𝐷𝑂𝑌 − 81) ∗ (
360

365
)

Here DOY is the day of year. The declination angle is computed as below:

𝑑𝑒𝑙𝑡𝑎 = −23.45 ∗ 𝑐𝑜𝑠 (
360

365
) ∗ (𝐷𝑂𝑌 + 10)

The Python code for this component is available here.

OpenEPW

This component has three input nodes (‘epwFile’, ‘output_index’, and
‘hour_of_year’) and four output nodes (‘data’, ‘dtype’, ‘index_list’ and
‘ReadMe’). It extracts temporally-dynamic data from the EnergyPlus
Weather (EPW) file, which is a text-based file format containing 8 rows
of static data, followed by 8760 rows of datasets corresponding to
every hour of the year.

Each of the hourly dataset rows are comprised of 35 environmental parameters – corresponding to various
data-types of temperature, irradiance, illuminance, etc. While connected to the weather file, this component
uses hour-of-year (HOY) and output-index as inputs, and parses through the dynamic datasets to extract
corresponding ‘data’ of the specified ‘dtype’. Here, ‘output-index’ is a numeric value between 1 and 35
corresponding to type of environmental parameter(‘dtype’); whereas HOY translates to a value between 1
and 8760 (365 x 24) corresponding to any given hour of any given day. For example, to extract Zenith
Luminance at 10 am on 2nd Jan, the HOY is set at 34, and ‘output-index’ is set at 20. The Python code for
this component is available here.

CIE_Skygen

This component has four input nodes (‘sunAltitude’, ‘sunAzimuth’,
‘Zen_Lum_Lz’ and ‘CIEskyType’), and two output nodes (‘matrix_out’
and ‘ReadMe’). It uses the CIE standard sky model for generating sky-
luminance data across 145 equal-sized discrete sky-patches
(‘matrix_out’), at various altitudinal/azimuthal positions in the sky-
dome.

https://github.com/marshalmaskarenj/OWL-SCALE/blob/main/SunPos.py
https://github.com/marshalmaskarenj/OWL-SCALE/blob/main/OpenEPW.py

8 | OWL documentation

The 145 positions correspond to the continuous scheme used in Daysim, adopted from Tregenza sky-
subdivision scheme. 145 luminance values are generated as output, as a function of the inputs, which
correspond to Solar Altitude, Solar Azimuth, Zenith Luminance, and CIE Sky-type, respectively. The first
three data for a given HOY are taken from SunPos and OpenEPW modules respectively (by setting index
at 20); while the CIE-Sky-type is user defined for parametric simulations at various sky-types. This
parameter takes a value between 1 and 15, which corresponds to the 15 CIE sky-types for a range of
overcast-, uniform-, intermediate- and clear-sky conditions. This component uses the following underlying
equations to evaluate the output from the input data:

The ratio of luminance of the arbitrary sky element (or, in our case, the luminance of the 145 pre-defined
positions) with respect to the luminance at zenith may be represented as a combination of gradation ratio
(φZ/ φ0) and indicatrix ratio (fχ/fZs) as:

𝐿𝛾𝛼

𝐿𝑧
=

𝑓(𝜒). 𝜑(𝑍)

𝑓(𝑍𝑠). 𝜑(0
°)

Here, the function f expresses the scattering indicatrix while the function φ expresses the luminance
gradation. Luminance at zenith is taken from weather file as input, and the luminance at any patch can be
evaluated using this ratio. Here, χ represents the angular distance of the sky-element from the sun, and is
calculated as:

𝜒 = 𝑐𝑜𝑠−1(𝑐𝑜𝑠𝑍𝑠. 𝑐𝑜𝑠𝑍 + 𝑠𝑖𝑛𝑍𝑠. 𝑠𝑖𝑛𝑍. 𝑐𝑜𝑠𝐴𝑧)

Here Az = |α – αs|, where α and αs are azimuthal angles of the vertical plane of the sky element and sun
position respectively. Z and Zs represent the zenith angles of the specific patch and of the sun, respectively.

For the luminance gradation function, the gradation at any sky element at angle Z from zenith is defined as:

𝜑(𝑍) = 1 + 𝑎. 𝑒𝑥𝑝 (
𝑏

𝑐𝑜𝑠𝑍
)

This is valid for 0<Z<π/2; however at the horizon, φ(π/2)=1. By definition, the Z value at zenith is 0 degrees,
as such,

𝜑(0°) = 1 + 𝑎. 𝑒𝑥𝑝(𝑏)

The position of the sun and the angle between the sun and sky-element is included in the Scattering
indicatrix function, which also accounts for the change in sun position as follows:

𝑓(𝜒) = 1 + 𝑐. (𝑒𝑥𝑝(𝑑. 𝜒) − 𝑒𝑥𝑝 (𝑑.
𝜋

2
)) + 𝑒. 𝑐𝑜𝑠2𝜒

Here χ is the angular distance of the sky-element from Sun. In the indicatrix function computed for the zenith,
solar angular distance of the zenith is the same as zenith distance of the Sun. Hence:

𝑓(𝑍𝑠) = 1 + 𝑐. (𝑒𝑥𝑝(𝑑. 𝑍𝑠) − 𝑒𝑥𝑝 (𝑑.
𝜋

2
)) + 𝑒. 𝑐𝑜𝑠2𝑍𝑠

In these equations, ‘a’, ‘b’, ‘c’, ‘d’, and ‘e’ are coefficients that depend on sky-type, and their values are

available in this paper here. The Python code for this component is available here.

https://www.researchgate.net/publication/238782731_CIE_general_sky_standard_defining_luminance_distributions
https://github.com/marshalmaskarenj/OWL-SCALE/blob/main/CIE_Skygen.py

9 | OWL documentation

PerezSky

This component has seven input nodes (‘sunAltitude’, ‘sunAzimuth’,
‘Zen_Lum_Lz’, ‘HorzDiffRad’, ‘DirNormRad’, ‘OptAirMass’, and
‘NormExIrrad’) and two output nodes (‘matrix_out’ and ‘ReadMe’). It
uses the Perez all-weather model for generating sky-luminance data
across 145 equal-sized discrete sky-patches, as described previously.
145 luminance output values are generated as a function of the inputs,
which are: Solar Altitude, Solar Azimuth, Zenith Luminance, Horizontal
Diffuse Radiation, Direct Normal Radiation, Optical Air Mass, and Extra-
terrestrial Direct Normal Radiation, respectively.

The Solar altitude/azimuth data is taken from the outputs of SunPos, while the other environmental
parameters for a given HOY are taken from OpenEPW by setting ‘index’ at: 20, 16, 15, and 12; for: Zenith
Luminance, Diffuse Horizontal Radiation, Direct Normal Radiation, and Extra-terrestrial Direct Normal
Radiation, respectively. The Optical Air Mass parameter is user-defined for parametric simulations at various
turbidity values. This component uses the following underlying equations to evaluate the output from the
input data:
The relative luminance is defined as ratio between luminance of the considered sky element and luminance
of a reference sky element (which, in our case is Zenith luminance from weather file), as

𝑙𝑣 = 𝑓(𝑍, 𝜒) = [1 + 𝑎𝑒𝑥𝑝(𝑏/ 𝑐𝑜𝑠 𝑍)] ∗ [1 + 𝑐 𝑒𝑥𝑝(𝑑𝜒) + 𝑒𝑐𝑜𝑠2𝜒]

Where Z is the zenith angle of the sky element, {a, b, c, d, e} represent adjustable coefficients, and χ
represents the angular distance of the sky-element from the sun, which is calculated as:

𝜒 = 𝑐𝑜𝑠−1(𝑐𝑜𝑠𝑍𝑠. 𝑐𝑜𝑠𝑍 + 𝑠𝑖𝑛𝑍𝑠. 𝑠𝑖𝑛𝑍. 𝑐𝑜𝑠𝐴𝑧)

Here Az = |α – αs|, where α and αs are azimuthal angles of the vertical plane of the sky element and sun
position respectively. Z and Zs represent the zenith angles of the specific patch and of the sun, respectively.
Since lv represents relative luminance, when the zenith luminance is known, luminance of any patch can be
evaluated as:

𝐿𝑝𝑎𝑡𝑐ℎ =𝐿𝑧𝑒𝑛𝑖𝑡ℎ ∗
𝑓(𝑍, 𝜒)

𝑓(0, 𝑍𝑠)

This is because, at zenith, the zenith angle is 0 and the angular distance with sun is the same as its zenith
angle. The significant difference between Perez Model and CIE model, is that in the CIE model, the values
of the coefficients a through e are taken from tabulated values, depending on the sky-type. For 15 different
sky-types ranging from overcast to intermediate to clear, the coefficients are available in literature, but the
user needs to define the sky-type. In Perez model, however, the coefficients are calculated based on data
from the weather file itself – and two parameters of sky’s clearness (ε) and sky brightness (Δ) are
precalculated from weather data for evaluating the coefficients, as:

𝜀 =
[
𝐸𝑒𝑑 + 𝐸𝑒𝑠

𝐸𝑒𝑑
+ 1.041𝑍3]

[1 + 1.041𝑍3]

𝛥 = 𝑚
𝐸𝑒𝑑
𝐸𝑒𝑠0

Here ‘m’ refers to optical air mass, Z is the solar zenith angle, and Eed, Ees and Ees0 refer to horizontal diffuse
irradiance, normal incident direct irradiance and normal incident extraterrestrial irradiance respectively, from
the weather file. Based on ε and Δ, the coefficients {a, b, c, d, e} are calculated as:

𝜃 = (𝜃1(𝜀) + (𝜃2(𝜀) ∗ 𝑍) + 𝑑𝑒𝑙𝑡𝑎 ∗ (𝜃3(𝜀) + (𝜃4(𝜀) ∗ 𝑍))

Where θ stands for a, b and e, and coefficients {a1,a2,a3,a4}, {b1,b2,b3,b4} and {e1,e2,e3,e4} are selected from
tabulated values based on ε, with thresholds of ε defined in this paper.

https://www.sciencedirect.com/science/article/abs/pii/0038092X9390017I

10 | OWL documentation

For c and d, the same functions as earlier are valid for ε thresholds higher than 1.065; but for sky clearness
value between 1 and 1.065, the following functions are used:

𝑐 = 𝑒𝑥𝑝[(𝛥(𝑐1 +𝑐2𝑍))
𝑐3 − 𝑐4

𝑑 = −𝑒𝑥𝑝[𝛥(𝑑1 + 𝑑2𝑍)] +𝑑3 + 𝛥𝑑4

Where sub-coefficients of c and d and also tabulated, and their ε thresholds are also available in literature.
The Python code for this component is available here.

skyLum_map

This component has four input nodes (‘matrix_out’, ‘region_mask’, ‘folder’,
and ‘runIt’) and one output node (‘sky_map’).
The output from CIE_Skygen or PerezSky connects to the input
(‘matrix_out’) along with location of mask file with 145 discrete equal-sized
patches (‘region_mask’); and this component generates an image of
skydome with 145 luminance data in the folder location specified (‘folder’).

The output (‘sky_map’) contains the location of this generated image, which can be connected to a Ladybug
ImageViewer component for visualizing luminance distribution on the Grasshopper canvas. This component
uses an external instance of Python 2.7, which needs to be installed on the system along with ‘cpython’
component in Grasshopper. The installation instruction for the pre-requisites is provided in an earlier section.
The Python code for this component is available here.

3CspectralSky

This component has thirteen input nodes, corresponding to average-SPD-
per channel (from SPD2spectral), location (latitude, longitude, and
timeZone from OpenEPW_loc), time of year (month, day, hour), solar
altitude angle (from SunPos), and weather file data (direct normal radiation,
and horizontal diffuse radiation from OpenEPW). Other inputs are user
defined, such as folder (location for saving radiance sky file as output),
sky_name (the name of output file to be saved), and sky-type (Radiance
sky-type: -s | +s | -c | -i | +i | -u).
This takes the input parameters to generate a Radiance sky file (.sky) with
the spectral skyglow parameter, which is used for Radiance image-based
simulation. With the average SPD per channel data input, this Radiance
skyfile serves as key input in Honeybee image-based simulation recipe,
which is used for Radiance simulation in Honeybee to generate HDR
luminance map.

This luminance map serves as input for the view-based workflow, where the luminance distribution is
discretized into equal segments using HDR2DiscreteLumEx, and this data, via components of OWL-View
cluster, connects to the OWL-spectral components for analyzing the NIF metrics. The Python code for this
component is available here.

HDR2DiscreteLumEx

This component has five input nodes (‘HDR_file’, ‘region_mask’,
‘view_mask’, ‘folder’ and ‘runIt’) which correspond to location of
radiance-generated HDR luminance file (‘HDR_file’), location of
mask file indicating region – with 145 discrete equal-sized patches
(‘region_mask’), location of mask file representing view – with either
of binocular/human-vision/fisheye boundaries (‘view_mask’),
location for saving component outputs (‘folder’), and a toggleable
Boolean for running this component (‘runIt’), respectively.

This component has four output nodes, which correspond to an array of 145 region-averaged luminance
data at the view -- equivalent to outputs from CIE_Skygen or PerezSky (‘matrix_out’), location of a false-
color luminance map for the scene (‘lumin_map’), location of luminance map factored with region-mask and

https://www.sciencedirect.com/science/article/abs/pii/0038092X9390017I
https://github.com/marshalmaskarenj/OWL-SCALE/blob/main/PerezSky.py
https://github.com/marshalmaskarenj/OWL-SCALE/blob/main/skyLum_map.py
https://github.com/marshalmaskarenj/OWL-SCALE/blob/main/3CspectralSky.py

11 | OWL documentation

view-mask (‘masked_image’), and location of a false-color luminance map with region-averaged luminance
values (‘region_lum’), respectively.
This component takes the HDR file, evaluates the luminance of each pixel using Radiance pvalue function,
factors-in the view-mask and discretizes the luminance into equal sized patches. For this component to
function, it needs multidimensional (.mat) files, corresponding to the 145 discrete regions, as well as
boundaries for binocular vision, human vision and fisheye, respectively – which are provided with this
workflow. The image-based outputs may be connected to Ladybug Imageviewer component for visualization
on the Grasshopper canvas. This component uses an external instance of Python 2.7, which needs to be
installed on the system along with ‘cpython’ component in Grasshopper. The installation instruction for the
pre-requisites is provided in an earlier section. The Python code for this component is available here.

2a. OWL-Sky

The ‘OWL-Sky’ cluster includes the following components: SpectralSkydome and

CCT2SPD, which are used for workflows specific to outdoor zenith-facing evaluation of

luminance and spectral metrics. This corresponds to a situation where the observer is

facing the zenith (that is, looking upwards) under an unobstructed sky dome, and is

exposed to all parts of the sky dome. For workflows where spectral and luminance

evaluations are done for a viewer indoors, these components may be replaced with

corresponding components of the ‘OWL-View’ cluster.

SpectralSkydome

This component has one input (‘matrix_out’) and three outputs
(‘m_out’, ‘m_CCT’, and ‘m_model’). Each of the input and output nodes
of this component correspond to arrays of 145 values, corresponding
to sky-discretized distribution of respective data as previously
described.

Here, ‘matrix_out’ and ‘m_out’ correspond to sky-luminance distribution from CIE_skygen or PerezSky
components, whereas ‘m_CCT’ and ‘m_model’ correspond to the calculated CCT of the respective patch
evaluated by an appropriate Luminance-to-CCT model. The models in literature for evaluating sky CCT from
sky luminance, along with recommendations for the most suitable model for a given range, have been
reported recently by Diakite-Kortlever and Knoop. Through numerical analysis of their recommendations,
the luminance thresholds are identified for application of the most suitable model across various luminance
ranges, when evaluating CCT from luminance for a patch. The Chain1999 model is applicable for patch-
luminance less than 3172 cd/m2, Rusnak model for luminance between 3172 and 5200 cd/m2, and the
Chain2004 model for luminance higher than 5200 cd/m2 for a sky-patch. For every input data-point
representing a luminance value, this component identifies the suitable model following the thresholds above,
and evaluates CCT for the respective patch by applying the model. The output nodes ‘m_out’, ‘m_CCT’ and
‘m_model’ correspond to input array of luminance, evaluated array of CCTs, and array of model-index used
for the evaluation, respectively. This component uses the following underlying equations to evaluate the
CCT of any sky-patch from the region-averaged luminance data as input:
When the luminance is less than 3172 cd/m2, the Chain1999 model is applied for luminance-to-CCT:

𝐶𝐶𝑇 =
106

−132.1 + 59.77𝑙𝑜𝑔10𝐿

Here L is the region-averaged luminance of any patch. When luminance is between 3172 and 5200
cd/m2,the Rusnak model is applied, where

𝐶𝐶𝑇 =
106

10.2 ∗ 𝐿0.26

https://github.com/marshalmaskarenj/OWL-SCALE/blob/main/HDR2DiscreteLumEx.py

12 | OWL documentation

For luminance higher than 5200 cd/m2, the Chain2004 model is applied for converting luminance to CCT,
as:

𝐶𝐶𝑇 =
106

181.35233+120(−4.22630+𝑙𝑜𝑔10𝐿)

The Python code for this component is available here.

CCT2SPD

This component has one input (‘CCT’) and two outputs (‘SPD’ and
‘Wavelength’). For any given input value between 4000 and 25000,
corresponding to CCT value in Kelvins, this component emulates the
models in the CIE015 standard

Using CIE015, this component generates 107 data-points corresponding to relative SPD for every 5nm
wavelength in the range of 300 to 830nm. The 52nd value, corresponding to relative SPD at 560nm is always
100. The CIE015 standard document reports the protocol – which is used in this component – for
reconstructing daylight’s CCT to SPD, with spectral resolution of 5nm through 300-830nm range. The model
restricts the CCT-input between 4000K and 25000K. For a given CCT value, the model evaluates 107 data-
points corresponding to relative spectral power distribution [S(λ)] of daylight D, for every 5nm bin through
300-830nm range. The distribution is normalized for the value at 560 nm wavelength, as such the normalized
SPD at 560nm is set to the value 100 (exactly) for any reconstructed SPD curve. For 145 patches, this
component generates 15515 values, corresponding to 145 arrays of 107 datapoints.
This component uses the following underlying equations to evaluate the output from the input data:

For CCT values between 4000K and 25000K, the CIE015 recommended standard color value (xD) can be
calculated as:

𝑥𝐷 =
−4.6070 ∗ 109

𝐶𝐶𝑇3
+
2.9678 ∗106

𝐶𝐶𝑇2
+
0.00911 ∗ 103

𝐶𝐶𝑇
+ 0.244063

, 𝑓𝑜𝑟4000𝐾 < 𝐶𝐶𝑇 < 7000𝐾

𝑥𝐷 =
−2.0064 ∗ 109

𝐶𝐶𝑇3
+
1.9018 ∗106

𝐶𝐶𝑇2
+
0.24748 ∗ 103

𝐶𝐶𝑇
+ 0.237040

, 𝑓𝑜𝑟7000𝐾 < 𝐶𝐶𝑇 < 25000𝐾

From the standard color value (xD), the CIE daylight locus (yD) can be calculated as:

𝑦𝐷 = (−3.000 ∗ 𝑥𝐷
2) + (2.870 ∗𝑥𝐷) − 0.275

With xD and yD values, the factors M1 and M2 can be calculated as:

𝑀1 =
−1.3515 − 1.7703𝑥𝐷 + 5.9114𝑦𝐷
0.0241 + 0.2562𝑥𝐷 − 0.7341𝑦𝐷

 , 𝑎𝑛𝑑

𝑀2 =
0.0300 − 31.4424𝑥𝐷 + 30.0717𝑦𝐷
0.0241 + 0.2562𝑥𝐷 − 0.7341𝑦𝐷

Along with factors M1 and M2, and wavelength-specific eigenvectors S0, S1 and S2; the SPD data for
wavelength between 300 to 830nm can be reconstructed as:

𝑆(𝜆) = 𝑆0(𝜆) +𝑀1 ∗ 𝑆1(𝜆) +𝑀2 ∗ 𝑆2(𝜆)

The tabulated values of wavelength-specific eigenvectors S0(λ), S1(λ) and S2(λ), for 5nm-separated SPD
between 300 to 830nm can be referred from the CIE015 standard document. The Python code for this
component is available here.

https://github.com/marshalmaskarenj/OWL-SCALE/blob/main/SpectralSkydome.py
https://cie.co.at/publications/colorimetry-4th-edition
https://github.com/marshalmaskarenj/OWL-SCALE/blob/main/CCT2SPD.py

13 | OWL documentation

2b. OWL::View

The ‘OWL-View’ cluster includes the following components: SpectralViewdome and

viewCCT2SPD, which are used for workflows specific to indoor evaluation of luminance

and spectral metrics. This corresponds to a situation where an observer is indoors, and

the luminance distribution at the observer’s view are taken from Radiance simulation

outputs. For workflows where an observer is facing the zenith under unobstructed sky, the

spectral and luminance evaluations may be done by replacing these components with

corresponding components of the ‘OWL-Sky’ cluster.

SpectralViewdome

This component has two input nodes (‘matrix_out’ and
‘lum_threshold’) and three output nodes (‘m_out’, ‘m_CCT’, and
‘m_model’).

While this performs in similar fashion to SpectralSkydome, there are two key modifications: the input-
luminance values are evaluated using Radiance image-based simulations and discretized into an array of
145-positions using HDR2DiscreteLumEx component; and another input node of ‘lum_threshold’ is used
for setting luminance thresholds that separate direct-sky component from indoor/reflected component of
luminance. This is because the models defined in Diakite-Kortlever and Knoop convert sky luminance to
CCT, and may not be applicable to luminous exitance from walls and other indoor surfaces. Thus, for
luminance values under the threshold (which loosely corresponds to reflected luminous exitance values),
the luminance and also the CCT values are muted, and outputs of ‘0’ are generated for both. The underlying
models are same as that for SpectralSkydome. The Python code for this component is available here.

viewCCT2SPD

This component has one input (‘CCT’) and two outputs (‘SPD’ and
‘Wavelength’).

While this performs in similar fashion to CCT2SPD, there is a key modification. Since SpectralViewdome
mutes out luminance (and CCT values) under the luminance threshold, this component generates arrays of
zeros for patches with zero CCT value – in addition to using the CIE015 protocol for the remaining patches.
For 145 patches, this component also generates 15515 values, corresponding to 145 arrays of 107
datapoints; with zeros filling in arrays with zero CCT input (for patches with internal reflected components).
The underlying models are same as that for CCT2SPD. The Python code for this component is available
here.

3. OWL::Spectral

This cluster includes components specific to spectral sky evaluations, which includes

protocols from literature, standards (CIE015 and CIES026) and toolboxes (CIE alpha-opic

toolbox, and LRC circadian toolbox); and includes: RelativeCombinedSPD, SPD_graph,

SPD2spectral, CIES026_aopic, and circadLight.

https://github.com/marshalmaskarenj/OWL-SCALE/blob/main/SpectralViewdome.py
https://github.com/marshalmaskarenj/OWL-SCALE/blob/main/viewCCT2SPD.py

14 | OWL documentation

RelativeCombinedSPD

This component has two inputs (‘SPD_5’ and ‘luminance’) and
three outputs (‘Rel_comb_SPD’, ‘patch_illum’ and ‘net illum’).

The inputs correspond to 5-nm separated arrays of SPD data, and luminance from any equal-sized patch,
respectively; whereas the outputs correspond to the evaluated Relative combined SPD from the
combination of sources, illuminance contribution of each equal-sized patch on a surface, and net illuminance
from all patches in the exposed hemisphere, respectively.
This component is used to merge multiple SPD contributions from various positions (such as the 145 sets
of SPD corresponding to the 145 patches, as generated by CCT2SPD or viewCCT2SPD) into one singular
SPD dataset, which may be used for evaluating alpha-opic or circadian metrics, or be used as a starting
spectral input for LARK. For this, the approach of LRC’s worksheet (Circadian Light Combined Calculator)
is replicated, and relative-combined-SPD for the entire sky-dome is calculated by considering each equal-
sized sky patch as individual light-source. The average luminance for each patch is calculated by PerezSky,
CIE_Skygen, or HDR2DiscreteLumEx, and the illuminance-contribution of each patch is identified by
factoring their subtended solid angle. Each of the 145 patches have an average solid angle of 0.0433
steradians (cone with 13.5° apex angle), which is further factored with the sine of their altitude angles: which
for patches 1-30, 31-60, 61-84, 85-108, 109-126, 127-138, 139-144 and 145; subtends by 6°, 18°, 30°, 42°,
54°, 66°, 78° and 90° respectively, with respect to the horizon. Patch-luminance factored with 0.0433
steradians, along with sine of individual altitude angles, yields the illuminance contributions for each patch.
In the workflows, this component reduces the 15515 datapoints corresponding to 145 sets of 107 values,
into one single set of 176 values corresponding to 2-nm separated SPD data over the entire hemisphere, in
the 380-730nm range. For more information, this publicly available toolbox can be referred. The Python
code for this component is available here.

SPD_graph

This component has four input nodes (‘Rel_Comb_SPD2’,
‘skyORview’, ‘folder’, and ‘runIt’) and one output node
(‘SPD_graph’). For the selection between sky or view (where
Boolean False represents sky-case and True represents view-
case), this component plots SPD data between 380-730nm range
with respective wavelength, and saves the plot in the specified
folder.

The output contains the location of the saved plot, and needs to be connected to Ladybug Imageviewer
component for visualizing the plot on grasshopper canvas. this component uses an external instance of
Python 2.7, which needs to be installed on the system along with ‘cpython’ component in Grasshopper. The
installation instruction for the pre-requisites is provided in an earlier section. The Python code for this
component is available here.

SPD2spectral

This component has one input (‘Rel_comb_SPD’) and one
output (‘channel_output’).

The input corresponds to 2nm separated SPD data in the 380-730nm range, and channel type (3-channel
or 9-channel); whereas the output corresponds to SPD averaged-per-channel. This has a functionality
similar to LARK’s ‘SpectralMaterials’ component. Here, the input SPD-data is binned to red, green and blue
regions of the wavelength, and binned-averages are normalized with SPD peak-value to generate average-
SPD-per-channel. The 586-780nm range is considered the red (R) region, the 498-586nm range is
considered the green (G) region, and the 380-498nm range is considered the blue (B) region of the visible
spectrum. 10nm-separated SPD data in the 300-830nm range is taken as input, and data in the R-G-B
domains is isolated and interpolated to 1-nm interval. Further, data in each of the three domains is averaged,
the bin-averages are normalized with SPD peak, and average SPD for each of the R-G-B channels is

https://www.lrc.rpi.edu/programs/lightHealth/index.asp
https://github.com/marshalmaskarenj/OWL-SCALE/blob/main/RelativeCombinedSPD.py
https://github.com/marshalmaskarenj/OWL-SCALE/blob/main/SPD_graph.py

15 | OWL documentation

evaluated as output. This output is key to generating radiance sky file with appropriate spectral contribution,
in 3CspectralSky component. The Python code for this component is available here.

CIES026_aopic

This component has three inputs (‘Rel_comb_SPD’, ‘alpha_type’, and
‘net_illum’) and seven output nodes (‘illuminance’, ‘a_opic_irradiance’,
‘a_opic_ELR’, ‘a_opic_DER’, ‘ a_opic_EDI’, ‘SPD_1’, and
‘a_opic_type’). The inputs correspond to 2nm separated SPD between
380-730nm range (from RelativeCombinedSPD), type of alpha-opic
(from among s-cone-opic, m-cone-opic, l-cone-opic, rhod-opic and
melan-opic), and net illuminance on the surface, respectively.

This component evaluates the outputs using the approach in the CIES026 toolbox, and these outputs: net
Illuminance, α-opic irradiance, α-opic Efficacy of Luminous Radiation (ELR), α-opic Daylight Efficacy Ratio
(DER), and α-opic Equivalent Daylight Illuminance (EDI) represent the alpha-opic metrics (or melanopic
metrics, when alpha-type is set at melanopic) recommended by CIE. Other outputs include the interpolated
1nm separated SPD in the 300-830nm range, and the category of a_opic used for simulation.

When alpha-type is set to melan-opic, this component uses the following equations to evaluate the
melanopic outputs from the input data (and by setting other α-opic types, the respective α-opic outputs are
calculated):

The melan-opic radiant flux (Φmel) (W) is calculated as:

𝛷𝑚𝑒𝑙 =∫𝛷𝑒,𝜆(𝜆)𝑠𝑚𝑒𝑙(𝜆)𝑑𝜆

OUT2: The melan-opic irradiance (Emel) (W/m2) is calculated as:

𝐸𝑚𝑒𝑙 = ∫𝐸𝑒,𝜆(𝜆)𝑠𝑚𝑒𝑙(𝜆)𝑑𝜆

OUT3: The melanopic efficacy of Luminous Radiation (mELR) (Kmel,v) (W/lm) is calculated as:

𝐾𝑚𝑒𝑙,𝑣 =
𝛷𝑚𝑒𝑙

𝛷𝑣
=
∫𝛷𝑒,𝜆(𝜆)𝑠𝑚𝑒𝑙 (𝜆)𝑑𝜆

𝐾𝑚 ∫𝛷𝑒,𝜆(𝜆)𝑉 (𝜆)𝑑𝜆

Here, Km equals 683.002 lm/W.

OUT4: The melan-opic daylight efficacy ratio (mDER) is defined as:

𝛾𝑚𝑒𝑙,𝑣
𝐷65 =

𝐾𝑚𝑒𝑙,𝑣

𝐾𝑚𝑒𝑙,𝑣
𝐷65

OUT5: The melan-opic equivalent daylight (D65) illuminance (m-EDI) (lux) is defined as:

𝐸𝑚𝑒𝑙,𝑣
𝐷65 =

𝐸𝑚𝑒𝑙

𝐾𝑚𝑒𝑙,𝑣
𝐷65

The denominator value in mDER and mEDI equations is the mELR for D65 radiation, calculated as:

𝐾𝑚𝑒𝑙,𝑣
𝐷65 =

𝛷𝑚𝑒𝑙
𝐷65

𝛷𝑣
𝐷65

=
∫𝛷𝑒,𝜆

𝐷65(𝜆)𝑠𝑚𝑒𝑙 (𝜆)𝑑𝜆

𝐾𝑚 ∫𝛷𝑒,𝜆
𝐷65(𝜆)𝑉 (𝜆)𝑑𝜆

Since D65 has a constant SPD, this value is always 1.3256.

For testing the validity of the mathematical models used in this component, this publicly available toolbox
can be referred. The Python code for this component is available here.

https://github.com/marshalmaskarenj/OWL-SCALE/blob/main/SPD2spectral.py
https://cie.co.at/publications/cie-system-metrology-optical-radiation-iprgc-influenced-responses-light-0
https://github.com/marshalmaskarenj/OWL-SCALE/blob/main/CIES026_aopic.py

16 | OWL documentation

circadLight

This component has two input nodes (‘Rel_comb_SPD’ and
‘net_illum’) and two output nodes (‘CLa’ and ‘CStim’).

The inputs correspond to 2-nm separated SPD data for the entire hemisphere in 380-730nm range, and net
illuminance at the surface from the entire exposed hemisphere, respectively; and these nodes take data
from the outputs of RelativeCombinedSPD component. This component emulates the LRC toolbox
(Circadian Light Combined Calculator) to evaluate the outputs of Circadian Light and Circadian Stimulus
from the inputs.

OUT1: Circadian Light is evaluated as:

𝐶𝐿𝑎 = 1547.9 [∫𝑀𝑐𝜆𝐸𝜆𝑑𝜆 + 0.7 ((∫𝑆𝑐𝜆𝐸𝜆𝑑𝜆 − 0.2616∫𝑉𝑐𝜆𝐸𝜆𝑑𝜆) − 3.3 (1 − 𝑒
∫ 𝑠𝑐𝑜𝜆 𝐸𝜆𝑑𝜆

6.5215
))]

Here Mcλ, Scλ, Vcλ,and scoλ, represent melanopic sensitivity factor, s-cone sensitivity factor, photopic
luminous efficiency function, and scotopic sensitivity factor, respectively. Eλ representing the light source
spectral irradiance function is calculated as:

𝐸𝜆 = ∫𝑟𝑐𝑆𝑃𝐷𝜆 ∗
𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒

683 ∫ 𝑃𝜆𝑟𝑐𝑆𝑃𝐷𝜆𝑑𝜆
𝑑𝜆

Here, rcSPD represents the relative combined SPD data between 380-730nm separated by 2nm interval –
an input data, illuminance is another input data, and Pλ represents the photopic sensitivity factor.

OUT2: Circadian Stimulus can be evaluated from Circadian Light as:

𝐶𝑆 = 0.7 ∗ (1 −
1

1 + (
𝐶𝐿𝑎
355.7

)
1.1026)

For testing validity of the mathematical models used in this component, this publicly available toolbox can
be referred. The Python code for this component is available here.

https://www.lrc.rpi.edu/programs/lightHealth/index.asp
https://github.com/marshalmaskarenj/OWL-SCALE/blob/main/circadLight.py

17 | OWL documentation

Describing functionality of the various components in the

workflow

1. Extracting relevant parameters from the weather file for the point in

time
The components named OpenEPW_loc and OpenEPW are designed to extract static headers and
temporally dynamic data from the EnergyPlus Weather (EPW) file.

The OpenEPW_loc component takes the weather file as input, and extracts location name, latitude,
longitude, time-zone, and elevation data, respectively.

While connected to the weather file, the OpenEPW component uses hour-of-year (HOY) and output-index
as inputs for extracting corresponding data; where ‘output-index’ is a numeric value between 1 and 35
corresponding to type of environmental parameter.

18 | OWL documentation

2. Solar Altitude and Azimuth at a point in time, for a location
The component SunPos uses the location data from OpenEPW_loc, along with user-defined Hour-of-Day
and Day-of-Year; to generate the solar altitude and solar azimuth at the location at the specified time

3. Generating sky-luminance for various sky patches
The components CIE_Skygen and PerezSky use the CIE standard sky model and Perez all-weather model,
respectively, for generating sky-luminance data across various altitudinal/azimuthal positions of the sky.

The CIE_Skygen module generates 145 luminance values as output, as a function of: Solar Altitude, Solar
Azimuth, Zenith Luminance, and CIE Sky-type; the first three data for a given HOY are taken from SunPos
and OpenEPW modules respectively, while the CIE-Sky-type is user-defined for simulating various sky-
types. This parameter takes a value between 1 and 15, which corresponds to the 15 CIE sky-types for a
range of overcast-, uniform-, intermediate- and clear-sky conditions. The component skyLum_map takes
the 145 datapoints as input along with a mask of 145 patches in a *.mat format, to generate a luminance
map for viewing on the GH canvas.

PerezSky also generates 145 luminance datapoints as output, as a function of: Solar Altitude, Solar
Azimuth, Zenith Luminance, Horizontal Diffuse Radiation, Direct Normal Radiation, Optical Air Mass, and
Extra-terrestrial Direct Normal Radiation. The Solar altitude/azimuth data is taken from the outputs of
SunPos, while the other environmental parameters for a given HOY are taken from OpenEPW by setting
‘index’ at: 20, 16, 15, and 12; for: Zenith Luminance, Diffuse Horizontal Radiation, Direct Normal Radiation,
and Extra-terrestrial Direct Normal Radiation, respectively. The Optical Air Mass parameter is user-defined
for parametric simulations at various turbidity values.

19 | OWL documentation

4. Generating Radiance skyfile for Image based simulation
The component 3CspectralSky, channel data (from SPD2spectral) and generates a radiance sky-file for
Radiance image-based simulations. This component takes added inputs, such as location information (from
OpenEPW_loc), Radiance sky-type, Time information (Hour/Day/Month), solar position (from SunPos), and
environmental parameters of Direct Normal Radiation and Diffuse Horizontal Radiation (from OpenEPW),
to generate a Radiance sky file. The average-SPD per channel data comprises the ‘skyfunc glow sky_mat’
parameter of the sky-file, which is one of the key inputs while generating luminance maps through
Honeybee’s ‘Run Daylight Simulation’ and ‘Image based simulation’ components.

5. Per-pixel reading of the luminance data, and discretizing luminance

at various view positions
The luminance maps generated by ‘Honeybee Run Daylight Simulation’ component are in high dynamic
range image (HDRi) format. Through post-processing, the per-pixel data from HDR files can be clustered
into 2-dimensional regions, which can then be averaged to reduce the data resolution and increase
computational speed. This way, the luminance detail from a user’s view is not compromised, and the CCT
of each region can be separately calculated from discretized luminance data, akin to the protocol used for
sky-luminance distribution.
HDR2DiscreteLumEx is designed to read HDR luminance maps and extract actionable data. This
component discretizes the HDR-luminance map to 145 constituents, representing equal sized regions in an
observer’s hemispherical view, where the center represents the foveal point. Additional inputs to this
component are: a multilayered .mat file of masks for each of the discretized regions; and a single-layer mask
file representing field of view: fisheye/binocular/human-vision.

The generated outputs of this component include maps of masked luminance, region-average luminance
map, and a matrix of 145 averaged luminance values to be used for the spectral recipe presented in the
next section.

20 | OWL documentation

6. Spectral recipes under sky and at the viewpoint
Spectral recipes involve multiple components, and are tailored for evaluating NIF metrics either under the
sky, or at the view positions. Sequentially, either recipe includes components for converting Luminance of
different patches to respective CCT, converting CCT of each patch further to SPD; cumulating SPD over
the hemisphere, and using this cumulative spectral data for evaluating the NIF metrics. Here, hemisphere
can refer either to the sky-dome with zenith at the center and horizon at the periphery; or it could refer to
fisheye view with foveal position at the center and peripheral at the edges. For evaluating NIF under
unobstructed sky, luminance distribution can be evaluated by CIE_Skygen or PerezSky components, while
for the view-analysis, the matrix output from HDR2DiscreteLumEx is used.

For sky-cases, SpectralSkydome component converts luminance data to respective CCT output for daylight,
by emulating luminance-related spectral sky models. For every input data-point representing a luminance
value, this component identifies the most-suitable model based on thresholds, evaluates CCT by applying
the model; and provides CCT and model-index as output. For view-cases, SpectralViewdome performs a
similar functionality, with the addition of providing a luminance threshold for separating direct-sky component
of daylight from the internally and externally reflected components. This is because luminance-to-CCT
models are applicable only for daylight.

CCT2SPD emulates the models in the CIE015 standard: a protocol for reconstructing daylight’s CCT to
SPD, with spectral resolution of 5nm through 300-830nm range. The model is applicable for CCT value
between 4000K and 25000K; and for a given CCT value, the model evaluates 107 data-points
corresponding to relative spectral power distribution [S(λ)] of daylight D, for every 5nm bin through 300-
830nm range. The distribution is normalized for the value at 560 nm wavelength, as such the normalized
SPD at 560nm is set to the value 100 (exactly) for any reconstructed SPD curve. For view-case, patches
with luminance under threshold represent reflected component of daylight, and SpectralViewdome
generates 0 CCT as data output for such patches. Further, a specifically tailored component ViewCCT2SPD
nullifies SPD contributions from patches with 0 CCT. The modification in these two components for view-
cases (SpectralViewdome + ViewCCT2SPD) from those used for sky-cases (SpectralSkydome +
CCT2SPD) is that only patches representing direct-sky component are considered for luminance-to-CCT-
to-SPD generation, while those representing internal or external bounces are neglected.

RelativeCombinedSPD cumulates the individual contributions of SPD and illuminance from each
hemispherical patch the entire hemisphere, for it to be useful in either NIF evaluating toolbox, or as the
spectral input for LARK. This component replicates the approach of LRC’s worksheet, and relative-
combined-SPD for the entire sky-dome is calculated by considering each equal-sized sky patch as individual
light-source. Each of the 145 patches have an average solid angle of 0.0433 steradians (cone with 13.5°

21 | OWL documentation

apex angle), which is further factored with the sine of their altitude angles: which for patches 1-30, 31-60,
61-84, 85-108, 109-126, 127-138, 139-144 and 145; subtends by 6°, 18°, 30°, 42°, 54°, 66°, 78° and 90°
respectively, with respect to the horizon. RelativeCombinedSPD takes 5nm-separated SPD data from
CCT2SPD (15515 values representing all 145 patches), along with luminance from each of the 145 patches
from PerezSky or CIE_Skygen, as inputs and evaluates the relative-combined-SPD (176 datapoints through
380-730nm range with step-size of 2nm) and net-illuminance as output. SPD_graph plots relative combined
SPD across the wavelength range, between 380 to 730nm.

CIES026_aopic emulates the CIES026 toolbox for evaluating α-opic metrics. The term ‘a-opic’ represents
either of the following: s-cone-opic, m-cone-opic, l-cone-opic, rhodopic, or melanopic. This component takes
incident-SPD and net-illuminance as inputs along with an indicator of the alpha-type, to evaluate the α-opic
metrics. By factoring α-opic and photopic sensitivity curves with the input data, the following α-opic metrics
are evaluated: net Illuminance, α-opic irradiance, α-opic Efficacy of Luminous Radiation (ELR), α-opic
Daylight Efficacy Ratio (DER), and α-opic Equivalent Daylight Illuminance (EDI). The component circadLight
emulates the protocol in the LRC toolbox (Circadian Light Combined Calculator), and evaluates the outputs
of Circadian Lighting and Circadian Stimulus. As input, this component takes in the Relative combined SPD
and net illuminance data from RelativeCombinedSPD component.

22 | OWL documentation

7. Dashboard of components
A user dashboard is created using panels and sliders for input, and with panels and ImageViewer for output,
as seen below:

